Binding of phenol and differently halogenated phenols to dissolved humic matter as measured by NMR spectroscopy.
نویسندگان
چکیده
1H- and 19F-NMR measurements of spin-lattice (T1) and spin-spin (T2) relaxationtimes and diffusion ordered spectroscopy (DOSY) were applied to investigate the association of nonsubstituted (phenol (P)) and halogen-substituted (2,4-dichlorophenol (DCP); 2,4,6-trichlorophenol (TCP), and 2,4,6-trifluorophenol (TFP) phenols with a dissolved humic acid (HA). T1 and T2 values for both 1H and 19F in phenols decreased with enhancing HA concentration, indicating reduction in molecular mobility due to formation of noncovalent interactions. Moreover, correlation times (tau c) for different hydrogen and fluorine atoms in phenols showed that anisotropic mobility turned into isotropic motion with HA additions. Changes in relaxation times suggested that DCP and TCP were more extensively bound to HA than P and TFP. This was confirmed by diffusion measurements which showed full association of DCP and TCP to a less amount of HA than that required for entire complexation of P and TFP. Calculated values of binding constants (Ka) reflected the overall NMR behavior, being significantly larger for DCP- and TCP-HA (10.04 +/- 1.32 and 4.47 +/- 0.35 M(-1), respectively) than for P- and TFP-HA complexes (0.57 +/- 0.03 and 0.28 +/- 0.01 M(-1), respectively). Binding increased with decreasing solution pH, thus indicating a dependence on the fraction of protonated form (alpha) of phenols in solution. However, it was found that the hydrophobicity conferred to phenols by chlorine atoms on aromatic rings is a stronger drive than alpha for the phenols repartition within the HA hydrophobic domains.
منابع مشابه
Co-polymerization of penta-halogenated phenols in humic substances by catalytic oxidation using biomimetic catalysis.
INTRODUCTION A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(III) chloride, Fe-(TDCPPS)Cl, was employed to catalyze the oxidative co-polymerization of penta-halogenated phenols in two humic materials of different origin. MATERIALS AND METHODS Co-polymerization of pentachlorophenol (PCP) was followed by high-performance size-exclusion chromatography (HP...
متن کاملCopolymerization of 2,4-dichlorophenol with humic substances by oxidative and photo-oxidative biomimetic catalysis.
We evaluated the catalytic activity of a water-soluble iron-porphyrin in an oxidative coupling reaction to form covalent bonds between 2,4-dichlorophenol (2,4-DCP) and humic molecules. The biomimetic catalysis in the presence of H₂O₂ was tested in the dark and in daylight, and changes in reaction products were revealed by high-performance liquid chromatography (HPLC) and nuclear magnetic resona...
متن کاملLinkages among fluorescent dissolved organic matter, dissolved amino acids and lignin-derived phenols in a river-influenced ocean margin
Excitation emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) is commonly used to investigate the dynamics of dissolved organic matter (DOM). However, a lack of direct comparisons with known biomolecules makes it difficult to substantiate the molecular composition of specific fluorescent components. Here, coincident surface-water measurements of EEMs...
متن کاملRates of oxidative coupling of humic phenolic monomers catalyzed by a biomimetic iron-porphyrin.
A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(lll) chloride (FeP) was used as biomimetic catalyst in the oxidative coupling of three monomeric phenols (catechol, caffeic, and p-coumaric acids), which are common constituents of natural humic substances. The extent of oxidation induced by the FeP catalyst in solutions of phenolic monomers was followed in...
متن کاملDifferent modes of binding of mono-, di-, and trihalogenated phenols to the hemoglobin dehaloperoxidase from Amphitrite ornata.
The hemoglobin dehaloperoxidase (DHP), found in the coelom of the terebellid polychaete Amphitrite ornata, is a dual-function protein that has the characteristics of both hemoglobins and peroxidases. In addition to oxygen transport function, DHP readily oxidizes halogenated phenols in the presence of hydrogen peroxide. The peroxidase activity of DHP is high relative to that of wild-type myoglob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 43 14 شماره
صفحات -
تاریخ انتشار 2009